Grand Ethiopian Renaissance Dam

Mitigation Mechanisms for Drought, Prolonged Drought, and Prolonged Periods of Dry Years

I. Filling Period of the GERD

A. Drought

If the flow* at the GERD is <37 bcm, the release from the GERD will be:

Flow + Additional Release according to the agreed GERD Release Rule under Drought Conditions Matrix (Exhibit A)

B. Prolonged Drought

If the average release from the GERD over the preceding 4 years is <37 bcm, the GERD will release a total of 62.5% of the storage above 603 meters over the following 4 years.**

The timing of the total release over the 4 year period is at the choice of Ethiopia subject to a minimum annual release that is ½ of Total Release/4.

The total release from storage over the following 4 years is not dependent upon the hydrological conditions of the river in future years.

C. Prolonged Period of Dry Years

If the average release from the GERD over the preceding 4 years is <40 bcm, the GERD will release a total of 50% of storage above 603 meters over the following 4 years.**

The timing of the total release over the 4 year period is at the choice of Ethiopia subject to a minimum annual release that is ½ of Total Release/4.

The total release from storage over the following 4 years is not dependent upon the hydrological conditions of the river in future years.

II. Long Term Operation of the GERD

A. Drought

If the flow at the GERD is <37 bcm (Q91)***, the release from the GERD will be:

CamScanning

Flow + Additional Release according to the agreed GERD Release Rule under Drought Conditions Matrix (Exhibit A)

B. Prolonged Drought

If the average release from the GERD over the preceding 4 years is <39 bcm (Q88)***, the GERD will release a total of 100% of the storage above 603 meters over the following 4 years.**

The timing of the total release over the 4 year period is at the choice of Ethiopia subject to a minimum annual release that is ½ of Total Release/4.

The total release from storage over the following 4 years is not dependent upon the hydrological conditions of the river in future years.

C. Prolonged Period of Dry Years

If the average release from the GERD over the preceding 5 years is <40 bcm (Q85)***, the GERD will release a total of 100% of storage above 603 meters over the following 5 years.**

The timing of the total release over the **5** year period is at the choice of Ethiopia subject to a minimum annual release that is ½ of Total Release/**5**.

The total release from storage over the following 5 years is not dependent upon the hydrological conditions of the river in future years.

*The term "flow" will be defined in the final agreement

*If both the conditions under mitigation measures of prolonged drought and of prolonged periods of dry years are triggered in a given year, the higher release value of the two measures will be applied.

**The numeric values of the quantiles will be adjusted based upon updated historical data of the hydrological conditions of the Blue Nile at the GERD site every ten years.

Exhibit A

Grand Ethiopian Renaissance Dam

Drought Conditions Matrix*

(Flow + Additional Release) **Total Release**

Flow of River

		F							BCM										
Level		37	36	35	34	22										-			
BCM	E			3	5	~	32	31	30	29	28	27	26	25	24	23	22	21	20
49.3 BCM	625 m	27																	
	111 0 30	Je	31	37	37	37	36.9	36.8	36.7	36.6	26 C	20.3			-				
46.2 BCM	623 m	37	36.9	36.8	36.7	36.6	30 .			0.00	0.00	20.3	36.1	35.9	35.7	35.5	35.2	34.9	34.8
AD 4 Bras			T	2000	100	0.00	30.4	36.2	36	35.8	35.6	35.3	35	34.7	34.4	34.1	722	22.2	
MING T'C+	620 m	37	36.8	36.6	36.4	36.2	35.9	35.6	35.2	30		1				Tito	1.00	0.00	1.55
40.1 BCM	618 m	37	36.7	30 1				Rinn	C.CC	5	34.7	34.3	33.9	33.5	33.1	32.7	32.2	31.7	31.4
		ic	1.00	30.4	30.1	35.8	35.4	35	34.6	34.7	33.8	C CC	0 10						T
37 BCM	615 m	37	36.6	36.7	35.0	36 4	200				0.00	0.00	0.75	34.3	31.8	31.3	30.7	30.1	29.7
		1		4.00	0.00	1.00	24.4	34.4	33.9	33.4	32.9	32.3	317	31 1	30.6	000			T
33.9 BCM	613 m	37	36.5	36	35.5	35	34.4	33.0	22.9	200	00			TITC	c'nc	6.62	29.2	28.5	28
30.8 BCM	610.00	27	30 4	20.0				0100	7.00	97.0	32	31.3	30.6	29.9	29.2	28.5	27.7	26.9	76.2
	IIIATA	10	100	\$.CE	35.2	34.6	33.9	33.2	32.5	31.8	21 1	000		100		T	1		
27.7 BCM	607 m	37	36.2	35.6	0.00					0.110	TITC	5.00	5.67	28.7	27.9	27.1	26.2	25.3	24.6
		;	1.00	0.00	04.7	34.2	33.4	32.6	31.8	31	30.2	293	19.4	37.6			T	1	1
24.7 BCM	603 m	37	36	35	34	00	~					0.04	4.02	C17	26.6	25.7	24.7	23.7	22.9
0			-		10	50	32	31	30	29	28	27	26	25	24	22			T
-													1		1	23	77	77	20

This matrix will be revised to reflect 50% of the evaporation of the GERD reservoir and include an upward adjustment of 1 BCM in the Single Si

Annex B

Grand Ethiopian Renaissance Dam

Stage I Filling

4.9 bcm	13.5 bcm (18.4 bcm total)	31 bcm	Lower of 31 bcm or flow of the river	If the flow of the river is less than 31 bcm, Stage I will be postponed
---------	---------------------------	--------	--------------------------------------	---

Stage I Filling (595 m level of GERD) Year 1 Year 2 Pefinition of Drought Release Rule Postponement of Stage I

CamScanning

Annex C

Stage Based Filling Plan of the GERD

Cumulative Retained Water at the End of June	4.9	18.4	28.9	39.3	49.3
Incremental Retained Water at the End of June (BCM)	4.9	13.5	10.5	10.4	10.0
Target Levels of Stages in GERD (m)	565	595	608	617	625
Stage	-	-	2	3	4

74 BCM at a level of 640 m.a.s.l.

*The full supply level of the GERD is

.

CamScanning